RSA Beispiel
Verschlüsselung
Bei der Verschlüsselung einer Nachricht werden folgende Variabeln gebraucht, die wir wie folgt wählen:
- Nachricht : B -> 2
- privater Schlüssel : 5
- erster Teil des öffentlichen Schlüssels : 14
Die Verschlüsselung erfolgt durch die folgende Formel:
Was mit den gewählten Zahlen wie folgt aussieht:
Wodurch man die verschlüsselte Nachricht Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle vN = 4} bekommt, die zum Buchstaben D übersetzt wird.
Entschlüsselung
Für die Entschlüsselung benötigt man zwei Zahlen, die zusammen einen öffentlichen Schlüssel bilden:
- erster Teil des öffentlichen Schlüssels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle oS_{1}} : 14
- zweiter Teil des öffentlichen Schlüssels Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle oS_{2}} : 11
Damit kann man die Nachricht folgendermaßen entschlüsseln:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle vN ^ {oS_{2}}\ \bmod\ oS_{1} = N}
Was mit der verschlüsselten Nachricht wie folgt aussieht:
Fehler beim Parsen (MathML mit SVG- oder PNG-Rückgriff (empfohlen für moderne Browser und Barrierefreiheitswerkzeuge): Ungültige Antwort („Math extension cannot connect to Restbase.“) von Server „https://wikimedia.org/api/rest_v1/“:): {\displaystyle D ^ {11}\ \bmod\ 14 = 4 ^ {11}\ \bmod\ 14 = 2 = B}